Search results for " 60H07"
showing 5 items of 5 documents
Almost sure central limit theorems for random ratios and applications to lse for fractional ornstein–uhlenbeck processes
2012
We investigate an almost sure limit theorem (ASCLT) for sequences of random variables having the form of a ratio of two terms such that the numerator satisfies the ASCLT and the denominator is a positive term which converges almost surely to 1. This result leads to the ASCLT for least square estimators for Ornstein-Uhlenbeck process driven by fractional Brownian motion.
Simulation of BSDEs with jumps by Wiener Chaos Expansion
2016
International audience; We present an algorithm to solve BSDEs with jumps based on Wiener Chaos Expansion and Picard's iterations. This paper extends the results given in Briand-Labart (2014) to the case of BSDEs with jumps. We get a forward scheme where the conditional expectations are easily computed thanks to chaos decomposition formulas. Concerning the error, we derive explicit bounds with respect to the number of chaos, the discretization time step and the number of Monte Carlo simulations. We also present numerical experiments. We obtain very encouraging results in terms of speed and accuracy.
Malliavin Calculus and Skorohod Integration for Quantum Stochastic Processes
2000
A derivation operator and a divergence operator are defined on the algebra of bounded operators on the symmetric Fock space over the complexification of a real Hilbert space $\eufrak{h}$ and it is shown that they satisfy similar properties as the derivation and divergence operator on the Wiener space over $\eufrak{h}$. The derivation operator is then used to give sufficient conditions for the existence of smooth Wigner densities for pairs of operators satisfying the canonical commutation relations. For $\eufrak{h}=L^2(\mathbb{R}_+)$, the divergence operator is shown to coincide with the Hudson-Parthasarathy quantum stochastic integral for adapted integrable processes and with the non-causal…
Ergodicity for a stochastic Hodgkin–Huxley model driven by Ornstein–Uhlenbeck type input
2013
We consider a model describing a neuron and the input it receives from its dendritic tree when this input is a random perturbation of a periodic deterministic signal, driven by an Ornstein-Uhlenbeck process. The neuron itself is modeled by a variant of the classical Hodgkin-Huxley model. Using the existence of an accessible point where the weak Hoermander condition holds and the fact that the coefficients of the system are analytic, we show that the system is non-degenerate. The existence of a Lyapunov function allows to deduce the existence of (at most a finite number of) extremal invariant measures for the process. As a consequence, the complexity of the system is drastically reduced in c…
Malliavin smoothness on the L\'evy space with H\"older continuous or $BV$ functionals
2018
We consider Malliavin smoothness of random variables $f(X_1)$, where $X$ is a pure jump L\'evy process and $f$ is either bounded and H\"older continuous or of bounded variation. We show that Malliavin differentiability and fractional differentiability of $f(X_1)$ depend both on the regularity of $f$ and the Blumenthal-Getoor index of the L\'evy measure.