Search results for " 60H07"

showing 5 items of 5 documents

Almost sure central limit theorems for random ratios and applications to lse for fractional ornstein–uhlenbeck processes

2012

We investigate an almost sure limit theorem (ASCLT) for sequences of random variables having the form of a ratio of two terms such that the numerator satisfies the ASCLT and the denominator is a positive term which converges almost surely to 1. This result leads to the ASCLT for least square estimators for Ornstein-Uhlenbeck process driven by fractional Brownian motion.

Mathematics::ProbabilityProbability (math.PR)FOS: MathematicsMathematics - Probability60F05 60G15 60H05 60H07
researchProduct

Simulation of BSDEs with jumps by Wiener Chaos Expansion

2016

International audience; We present an algorithm to solve BSDEs with jumps based on Wiener Chaos Expansion and Picard's iterations. This paper extends the results given in Briand-Labart (2014) to the case of BSDEs with jumps. We get a forward scheme where the conditional expectations are easily computed thanks to chaos decomposition formulas. Concerning the error, we derive explicit bounds with respect to the number of chaos, the discretization time step and the number of Monte Carlo simulations. We also present numerical experiments. We obtain very encouraging results in terms of speed and accuracy.

Statistics and ProbabilityWiener Chaos expansionDiscretizationMonte Carlo methodTime stepConditional expectation01 natural sciences010104 statistics & probabilitybackward stochastic differential equations with jumpsFOS: MathematicsApplied mathematics60H10 60J75 60H35 65C05 65G99 60H070101 mathematicsMathematicsPolynomial chaosApplied MathematicsNumerical analysis010102 general mathematicsMathematical analysista111Probability (math.PR)numerical methodCHAOS (operating system)[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Modeling and SimulationScheme (mathematics)Mathematics - Probability
researchProduct

Malliavin Calculus and Skorohod Integration for Quantum Stochastic Processes

2000

A derivation operator and a divergence operator are defined on the algebra of bounded operators on the symmetric Fock space over the complexification of a real Hilbert space $\eufrak{h}$ and it is shown that they satisfy similar properties as the derivation and divergence operator on the Wiener space over $\eufrak{h}$. The derivation operator is then used to give sufficient conditions for the existence of smooth Wigner densities for pairs of operators satisfying the canonical commutation relations. For $\eufrak{h}=L^2(\mathbb{R}_+)$, the divergence operator is shown to coincide with the Hudson-Parthasarathy quantum stochastic integral for adapted integrable processes and with the non-causal…

Statistics and ProbabilityPure mathematics[MATH.MATH-PR] Mathematics [math]/Probability [math.PR]Integrable systemComplexificationSpace (mathematics)Malliavin calculus01 natural sciences81S25Fock space81S25; 60H07; 60G15010104 statistics & probabilitysymbols.namesakeOperator (computer programming)60H07FOS: Mathematics0101 mathematicsMathematical PhysicsMathematicsApplied Mathematics010102 general mathematicsProbability (math.PR)Hilbert spaceStatistical and Nonlinear Physics[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Bounded function60G15symbols[ MATH.MATH-PR ] Mathematics [math]/Probability [math.PR]Mathematics - Probability
researchProduct

Ergodicity for a stochastic Hodgkin–Huxley model driven by Ornstein–Uhlenbeck type input

2013

We consider a model describing a neuron and the input it receives from its dendritic tree when this input is a random perturbation of a periodic deterministic signal, driven by an Ornstein-Uhlenbeck process. The neuron itself is modeled by a variant of the classical Hodgkin-Huxley model. Using the existence of an accessible point where the weak Hoermander condition holds and the fact that the coefficients of the system are analytic, we show that the system is non-degenerate. The existence of a Lyapunov function allows to deduce the existence of (at most a finite number of) extremal invariant measures for the process. As a consequence, the complexity of the system is drastically reduced in c…

Statistics and ProbabilityDegenerate diffusion processesWeak Hörmander conditionType (model theory)01 natural sciencesPeriodic ergodicity010104 statistics & probability60H0760J25FOS: Mathematics0101 mathematicsComputingMilieux_MISCELLANEOUSMathematical physicsMathematics60J60Quantitative Biology::Neurons and CognitionProbability (math.PR)010102 general mathematicsErgodicityOrnstein–Uhlenbeck processHodgkin–Huxley model[MATH.MATH-PR]Mathematics [math]/Probability [math.PR]Hodgkin–Huxley model60J60 60J25 60H07Statistics Probability and UncertaintyTime inhomogeneous diffusion processesMathematics - Probability
researchProduct

Malliavin smoothness on the L\'evy space with H\"older continuous or $BV$ functionals

2018

We consider Malliavin smoothness of random variables $f(X_1)$, where $X$ is a pure jump L\'evy process and $f$ is either bounded and H\"older continuous or of bounded variation. We show that Malliavin differentiability and fractional differentiability of $f(X_1)$ depend both on the regularity of $f$ and the Blumenthal-Getoor index of the L\'evy measure.

Mathematics::Probability60G51 60H07Mathematics - Probability
researchProduct